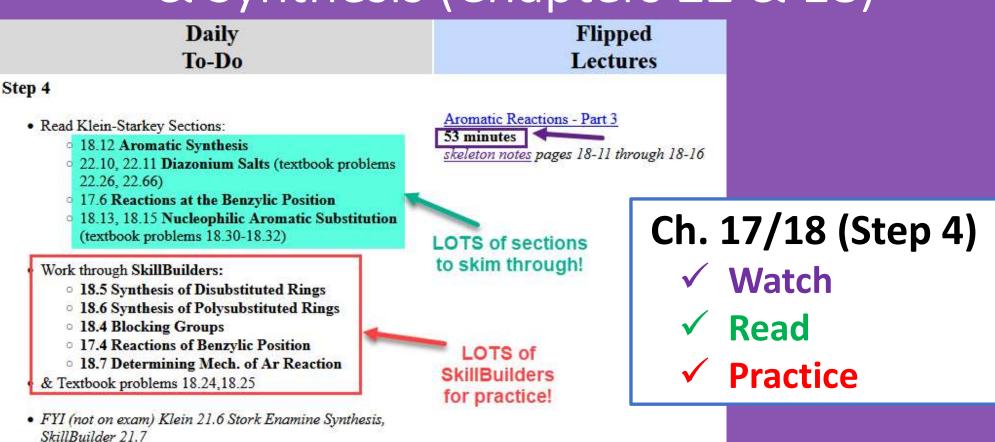
For clicker question voting, go to: https://pollev.com/lauriestarke263



Dr. Laurie S. Starkey
Cal Poly Pomona

CHM 3150 Organic Chemistry II Announcements 11/18/25

Today's Topic: Diazonium Salts & Synthesis (Chapters 22 & 18)

omatic Compounds: Reactions, Part 2 💌		≘+ -	59:1
Intro		0:00	
Reagents for Electrophilic Aromatic Substitution		0:07	
Reagents for Electrophilic Aromatic Substitution			
Preparation of Diazonium Salt		2:12	
Preparation of Diazonium Salt		2:13	ġ
Reagents for Sandmeyer Reactions		4:14	ľ.
Reagents for Sandmeyer Reactions		4:15	
Apply Diazonium Salt in Synthesis		6:20	
Example: Transform		6:21	
Apply Diazonium Salt in Synthesis		9:14	l)
Example: Synthesize Following Target Molecule from Benzene or Toluene			
Apply Diazonium Salt in Synthesis		14:56	
Example: Transform		14:57	
Reactions of Aromatic Substituents		21:56	
A) Reduction Reactions		21:57	
Reactions of Aromatic Substituents	Diazonium Salts	23:24	
B) Oxidations of Arenes		23:25	
Benzylic [ox] Even Breaks C-C Bonds!		25:05	
Benzylic Carbon Can't Be Quaternary	Rxns of Aromatic	25:55	
Reactions of Aromatic Substituents	Substituents	26:21	
Example	Substituents	26:22	
Review of Benzoic Acid Synthesis		27:34	
Via Hydrolysis	Nucleanbilia Ar	27:35	
Via Grignard	Nucleophilic Ar.	28:20	
Reactions of Aromatic Substituents	Substitution (SnAr)	29:15	
C) Benzylic Halogenation		29:16	
Radical Stabilities		31:55	
N-bromosuccinimide (NBS)		32:23	
Reactions of Aromatic Substituents		33:08	ŝ
D) Benzylic Substitutions		33:09	
Reactions of Aromatic Side Chains		37:08	
Example: Transform		37:09	
Nucleophilic Aromatic Substitution		43:13	8
Nucleophilic Aromatic Substitution		43:14	
Nucleophilic Aromatic Substitution		47:08	
Example		47:09	į.
Mechanism		48:00	6
Nucleophilic Aromatic Substitution		50:43	
Example		50:44	

Flipped lecture: Ch. 18/22 Aromatic Rxns (Part 3 of 3)

Handout: <u>Electrophiles for EAS</u>

Klein	EAS Reaction	Conditions	Electrophile (E ⁺)	Mech. to make E ⁺ (first steps in EAS)	
18.2	halogenation –X	Br ₂ /FeBr ₃ Cl ₂ /FeCl ₃	Br $\xrightarrow{\oplus}$ \ominus Br \Rightarrow Br $\xrightarrow{\oplus}$ \ominus CI $\xrightarrow{\ominus}$ CI $\xrightarrow{\ominus}$ CI $\xrightarrow{\oplus}$	$ \frac{great}{LG} \begin{cases} Br & Br \\ Br & Fe -Br \\ Br & Br \end{cases} $	
18.4	nitration -NO ₂	HNO ₃ , H ₂ SO ₄	O=N=O (nitronium ion)	great LG H O H O loss of water LG to make NO_2^+	
18.3	sulfonation* -SO ₃ H	SO_3 , H_2SO_4	$\bigcap_{0=0}^{0} \bigoplus_{0=0}^{0} \bigcap_{0=0}^{0}$	N/A *reaction is reversible (SO ₃ is Electrophile) (heat removes -SO ₃ H group)	
18.5	Friedel-Crafts alkylation -R	ROH/HA or ROH/BF ₃ or RX/FeX ₃ + HA		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
18.6	Friedel-Crafts acylation	OF HA (HF) R CI + AlCl ₃ O O O + AlCl ₃ R O R	(actium ion	H¹A bond to make carbocation R-C≡0: O O O O O O O O O O O O O O O O O O O	

Handout: Diazonium Salts/Synthesis

Aromatic Substitution Reactions & Synthesis of Aromatic TM's

Reagents for Electrophilic Aromatic Substitution:

(Klein Sections 18.1-18.6, generate E+)

Br₂/FeBr₃ HNO₃, SO₃, ROH, BF₃
$$R$$
 Cl_2 /FeCl₃ H_2 SO₄ H_2 SO₄ H_2 SO₄ R RX , FeX₃

Reagents for Sandmeyer Reactions:

(Klein Section 22.11, react with ArN2+)

Br Cl CuBr N CuCN
$$H_3PO_2$$
 H_2SO_4 OH

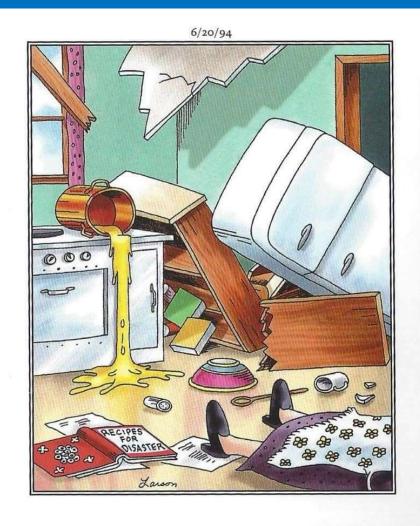
Reagents will be provided on Cover Page of Exam 3!

Preparation of Diazonium Salt (ArN2+):

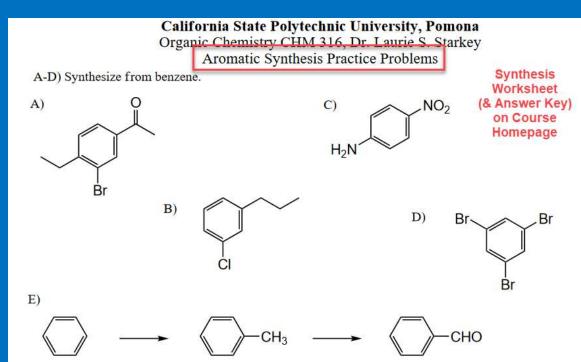
Exam III Tuesday, 11/25 (Chapters 21 & 17/18)

65-minute written exam

no Scantron, no lecture after


No notes, calculators, model kits allowed

• Bring pencil(s), eraser


Sample exams on course homepage

See typical length, format

Extra office hour/
review session
(Zoom, recorded)
Sun. 11/23, time TBD

Synthesis requires careful planning!

"Recipes for Disaster" - The Far Side, Gary Larson

Celebrating a former student as she continues her journey...congrats to Christina!

Christina shows Chemistry ASL in Chapter 5!

